Abstract
Hyperglycemia and insulin resistance have been associated with a worse outcome in sepsis. Although tight glycemic control through insulin therapy has been shown to reduce morbidity and mortality rates, the effect of intensive insulin therapy in patients with severe sepsis is controversial because of the increased risk of serious adverse events related to hypoglycemia. Recently, knowledge about diacerhein, an anthraquinone drug with powerful antiinflammatory properties, revealed that this drug improves insulin sensitivity, mediated by the reversal of chronic subclinical inflammation. The aim of the present study was to evaluate whether the antiinflammatory effects of diacerhein after onset of sepsis-induced glycemic alterations is beneficial and whether the survival rate is prolonged in this situation. Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Blood glucose and inflammatory cytokine levels were assessed 24 hours after CLP. The effect of diacerhein on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle, and adipose tissue. Here we demonstrated that diacerhein treatment improves survival during peritoneal-induced sepsis and inhibits sepsis-induced insulin resistance by improving insulin signaling via increased insulin-receptor substrate-1-associated phosphatidylinositol 3-kinase activity and Akt phosphorylation. Diacerhein also decreases the activation of endoplasmic reticulum stress signaling that involves upregulation of proinflammatory pathways, such as the I kappa B kinase and c-Jun NH2-terminal kinase, which blunts insulin-induced insulin signaling in liver, muscle, and adipose tissue. Additionally, our data show that this drug promoted downregulation of proinflammatory signaling cascades that culminate in transcription of immunomodulatory factors such interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. This study demonstrated that diacerhein treatment increases survival and attenuates the inflammatory response with a significant effect on insulin sensitivity. On the basis of efficacy and safety profile, diacerhein represents a novel antiinflammatory therapy for management of insulin resistance in sepsis and a potential approach for future clinical trials.
Highlights
retract this article because it was brought to the Editors' attention that some figures appear to be similar to those
that there was no evidence of research misconduct
The authors maintain that the similarities do not affect the interpretation
Summary
The authors would like to retract this article [1] because it was brought to the Editors’ attention that some figures appear to be similar to those within the article and in previous publications [2,3,4,5,6,7,8,9,10,11]. [2] And Fig. 2D (IB:IRb) from Flores et al 2012 [2] And Fig. 4I (IB: GLUT4) from Prada et al 2006 [3] And Fig. 6F (IP:IR/IB:pY) from Flores et al 2006 [5] And Fig. 3B (Total p70S6K) from Ropelle et al 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.