Abstract
The classical notion of retraction map used to approximate geodesics is extended and rigorously defined to become a powerful tool to construct geometric integrators and it is called discretization map. Using the geometry of the tangent and cotangent bundles, we are able to tangently and cotangent lift such a map so that these lifts inherit the same properties as the original one and they continue to be discretization maps. In particular, the cotangent lift of a discretization map is a natural symplectomorphism, what plays a key role for constructing geometric integrators and symplectic methods. As a result, a wide range of (higher-order) numerical methods are recovered and canonically constructed by using different discretization maps, as well as some operations with Lagrangian submanifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.