Abstract

Fiber-reinforced polymer (FRP) composite sandwich panels with a core of sinusoidal geometry have been recently used in highway bridge and aquaculture tank applications. The selection of geometric shape and size of sinusoidal cores to meet given design requirements is critical in efficient applications of sandwich structures, and their effective transverse shear stiffness properties are important material properties in analysis and design. Based on a combined homogenization and multi-objective optimization technique, the effective transverse shear stiffness properties of sinusoidal cores are studied and optimized. An analytical approach using two-scale homogenization technique is used to predict the effective transverse shear stiffness properties of thin-walled sinusoidal honeycomb cores. The optimization problem is then solved using a sequential quadratic programming algorithm. Two types of optimization problems are presented: the maximization of effective transverse shear stiffness of honeycomb core with...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.