Abstract

Buoyancy-driven laminar free-convection flow, heat, and mass of a non-Newtonian nanofluid from a horizontal circular cylinder to a micropolar fluid have been investigated numerically using an implicit finite difference scheme. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A nonsimilarity solution is presented that depends on the Prandtl number Pr, Schmidt number Sc, Brownian motion parameter Nb, thermophoresis parameter Nt, material parameter K, and buoyancy ratio parameter N. It is observed that increasing the Brownian motion parameter increases the temperature, Sherwood number, and wall couple stress but decreases the velocity, concentration, angular velocity, skin friction, and Nusselt number. An increase in the thermophoresis parameter is observed to accelerate the velocity, concentration, angular velocity, skin friction, and Nusselt number, whereas it decreases the temperature, the reduced Sherwood number, and wall couple stress. The velocity, angula...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call