Abstract

15-Hydroxyprostaglandin Dehydrogenase-derived 15-Keto-prostaglandin E2 Inhibits Cholangiocarcinoma Cell Growth through Interaction with Peroxisome Proliferator-activated Receptor-γ, SMAD2/3, and TAP63 ProteinsJournal of Biological ChemistryVol. 288Issue 27PreviewProstaglandin E2 (PGE2) is a potent lipid mediator that plays a key role in inflammation and carcinogenesis. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes the oxidation of the 15(S)-hydroxyl group of PGE2, which leads to PGE2 biotransformation. In this study, we showed that the 15-PGDH-derived 15-keto-PGE2 is an endogenous peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand that causes PPAR-γ dissociation from Smad2/3, allowing Smad2/3 association with the TGF-β receptor I and Smad anchor for receptor activation and subsequent Smad2/3 phosphorylation and transcription activation in human cholangiocarcinoma cells. Full-Text PDF Open Access VOLUME 288 (2013) PAGES 19484–19502 This article has been retracted by the publisher. Images were reused to represent different experimental conditions in Fig. 7, D and G.

Highlights

  • This article has been retracted by the publisher

  • Authors are urged to introduce these corrections into any reprints they distribute

  • Secondary (abstract) services are urged to carry notice of these corrections as prominently as they carried the original abstracts

Read more

Summary

Introduction

Retraction: 15-Hydroxyprostaglandin dehydrogenase-derived 15-keto-prostaglandin E2 inhibits cholangiocarcinoma cell growth through interaction with peroxisome proliferator-activated receptor-␥, SMAD2/3, and TAP63 proteins.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.