Abstract

Triptolide, a diterpene triepoxide, from the Chinese herb Tripterygium wilfordii Hook.f, exerts its anti-inflammatory and immunosuppressive activities by inhibiting the transcription factor nuclear factor-κB (NF-κB) pathway, through a mechanism not yet fully understood. We found that triptolide, in nanomolar concentrations, suppressed both constitutive and inducible NF-κB activation, but did not directly inhibit binding of p65 to the DNA. The diterpene did block TNF-induced ubiquitination, phosphorylation, and degradation of IκBα, the inhibitor of NF-κB and inhibited acetylation of p65 through suppression of binding of p65 to CBP/p300. Triptolide also inhibited the IκBα kinase (IKK) that activates NF-κB and phosphorylation of p65 at serine 276, 536. Furthermore, the NF-κB reporter activity induced by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKKβ was abolished by the triepoxide. Triptolide also abrogated TNF-induced expression of cell survival proteins (XIAP, Bcl-x(L), Bcl-2, survivin, cIAP-1 and cIAP-2), cell proliferative proteins (cyclin D1, c-myc and cyclooxygenase-2), and metastasis proteins (ICAM-1 and MMP-9). This led to enhancement of apoptosis induced by TNF, taxol, and thalidomide by the diterpene and to suppression of tumor invasion. Overall, our results demonstrate that triptolide can block the inflammatory pathway activated by TNF-TNFR1-TRADD-TRAF2-NIK-TAK1-IKK, sensitizes cells to apoptosis, and inhibits invasion of tumor cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.