Abstract
The effect of increasing MgO/Na 2O replacements (on mole basis) on the crystallization characteristics of glasses based on the CaO–Na 2O(MgO)–P 2O 5–CaF 2–SiO 2 system were studied by using DTA, XRD, and SEM. The crystallization characteristics of the glasses, the type of crystalline phases formed and the resulting microstructure were investigated. The main crystalline phases formed after controlled heat-treatment of the base glass were diopside, wollastonite solid solution, fluoroapatite and sodium calcium silicate phases. The increase of MgO at the expense of Na 2O led to decrease the amount of sodium calcium silicate phase. The Vicker's microhardness values (5837–3362 MPa) of the resulting glass–ceramics were markedly improved by increasing the MgO-content in the glasses. The obtained data were correlated to the nature and concentration of the crystalline phases formed and the resulting microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.