Abstract

Thermal transport in 3D flow of Burgers nanofluid due to bidirectional stretching is an interesting topic with large number of applications. Motivated by this fact we formulated mathematical modelling for the 3D flow of viscoelastic Burgers nanofluid accelerated by bidirectional stretching surface. We studied the fluid relaxation and retardation time effects on the momentum and thermal transport of Burgers fluid. Moreover, we considered the effects of heat rise/fall and Ohmic heating to analyze the heat transport features in the flow of viscoelastic nanofluid. A momentous feature of this study is to incorporate the thermal relaxation time phenomenon to observe the properties of heat flow in nanofluid. Additionally, the mass transport phenomenon is explored by employing modified mass flux model and chemical reaction effects. Results are attained by employing homotopy analysis method (HAM) and illustrated through graphical representation. The main finding of the study exposes that the thermal transport in the flow is accelerated due to building strength of Eckert number [Formula: see text]. Moreover, the depreciating trend of concentration profiles is being detected for building strength of constructive chemical reaction parameter [Formula: see text]. Also, it is seen that the escalating magnitude of thermal relaxation time parameter [Formula: see text] serves to decline the heat flow rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.