Abstract
ER stress triggers myocardial contractile dysfunction although the underlying mechanism is still elusive. Given that NADPH oxidase was recently implicated in ER stress-induced tissue injury, this study was designed to examine the role of NADPH oxidase in ER stress-induced cardiac mechanical defects and the impact of Akt activation on ER stress-induced cardiac anomalies. Wild-type and transgenic mice with cardiac-specific overexpression of an active mutant of Akt (MyAkt) were subjected to the ER stress inducer thapsigargin (1 and 3mg/kg, ip, for 48h). Thapsigargin compromised echocardiographic parameters, including elevating LVESD and reducing fractional shortening; suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, and cell survival; and enhanced carbonyl formation, apoptosis, superoxide production, NADPH oxidase expression, and mitochondrial damage. Interestingly, these anomalies were attenuated or mitigated by chronic Akt activation. Treatment with thapsigargin also dephosphorylated Akt and its downstream signal GSK3β (leading to activation of GSK3β), the effect of which was abrogated in MyAkt hearts. Knockdown of the cytosolic subunit of NADPH oxidase, p47(phox), using siRNA abrogated thapsigargin-induced apoptosis and cell death in H9C2 myoblasts. In vitro exposure to thapsigargin induced murine cardiomyocyte dysfunction reminiscent of the in vivo setting, the effects of which were ablated by the NADPH oxidase inhibitor apocynin and the mitochondrial Ca(2+) uptake inhibitor Ru360. In addition, apocynin abrogated thapsigargin-induced loss of mitochondrial membrane potential and permeability transition pore opening, similar to chronic Akt activation. In summary, these data suggest that ER stress interrupts cardiac contractile and intracellular Ca(2+) homeostasis, cell survival, and mitochondrial integrity through an Akt dephosphorylation- and NADPH oxidase-dependent mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Free Radical Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.