Abstract

Diabetic retinopathy (DR) is a serious complication of diabetes, which is the main cause of blindness among adults. Traditional Chinese medicines (TCMs) have been proven to delay the development of DR. Nonetheless, the effect of Schizandrin A (SchA) on DR remains uninvestigated. The present study aimed to probe the protective effect of SchA on high-glucose (HG)-induced injury in ARPE-19 cells. We observed that SchA accelerated cell proliferation, prohibited apoptosis, and restrained pro-inflammatory cytokines (monocyte chemoattractant protein-1 [MCP-1], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) and reactive oxygen species (ROS) level in HG-stimulated cells. Additionally, miR-145 expression was upregulated in HG and SchA co-treated cells, and miR-145 inhibition reversed the protective effect of SchA on HG-managed ARPE-19 cells. Interestingly, downregulated myeloid differentiation factor 88 (MyD88) was found in HG and SchA co-treated cells, and upregulation of MyD88 was observed in miR-145 inhibitor-transfected cells. Additionally, SchA hindered nuclear factor κB (NF-κB) and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in HG-treated ARPE-19 cells. The findings validated that SchA could protect ARPE-19 cells from HG-induced cell injury by regulation of miR-145.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call