Abstract
Energy hub as the future’s energy technology has discussed a new point of view in the energy consumption optimization field. The heating market as a new energy market, which is recently in some countries, presents a new venue for an energy hub operation. Heat demand side management is another control variable that makes the hub’s management more active and flexible. Providing heat from the heating market and utilization heat demand response features can influence the hub’s operational cost because of adding new degrees of freedom to the problem. In this paper, risk-based stochastic scheduling of energy hub is formulated via scenario-based stochastic programming by considering a wind turbine, electricity market, electrical and heat storage systems, electrical and heat demand response programs (DRP), and the heating market as the new found energy market. The downside risk constraints (DRC) are proposed to minimize the risk associated with uncertainties in order to obtain the risk-based scheduling of energy hub. Simulation results have been presented in different cases to show the impact of DRC implementation which the expected cost is increased while the risk-in-cost (RIC) is decreased. Finally, the effect of the DRP on the problem is investigated and the results show that the expected cost and RIC are decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.