Abstract
AbstractRecycled aggregates (RAGs) usage in concrete is surging, inspired by environmental and economic concerns. Regarding predicting various models designed the values of modulus of elasticity (MOE) of concrete with natural aggregates and, in conclusion, they would probably be unreliable when used to concrete with RAG. In the present study, two new gray wolf multi‐layer perceptron neural networks (GWMLP) and gray wolf support vector regression (GWSVR) algorithms were proposed to predict RAG concrete's elastic modulus. About 400 records were gathered from published articles to develop these models. The results show that among the GWMLP models with different hidden layers, GWM3L with three hidden layers could get the highest score (TRS) at 39. Simultaneously, in the testing phase, the GWSVR was the first‐rank model because of the lower RMSE (0.6381), MAE (0.1541), and a larger (0.9707) compared with GWMLP models. Therefore, it can result that the GWSVR model could predict the elastic modulus of RAG concrete precisely even better than GWM3L, which is well over the accuracy of the developed models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.