Abstract

Particular non-axisymmetric Homann stagnation point flow of Walter’s B fluid over a vertical cylindrical disk is considered in this work. Important physical aspects of newly transient state problem are described by incorporating the effects of magnetic field and mixed convection. Additionally, the temperature and solute concentration are expressed with new parameters in the form of Brownian motion, thermophoretic force, thermal radiation, and 1st order chemical reaction. Furthermore, the problem is modeled with non-linear PDE’s, and which are further converted into ODE’s along with the proposed geometric conditions. Exploration of new physical impacts are described in the form of velocity, temperature, concentration, and displacement thicknesses by applying numerical scheme. However, the momentum equation subjected to the insufficient boundary conditions converting us to apply perturbation technique to reduce the order of ODE accordingly. It is conducted that displacement thicknesses [Formula: see text] and [Formula: see text] tends to its asymptotic value, as [Formula: see text] On the other hand, the displacement thickness [Formula: see text] is found in reverse trends, for the same escalating values of viscoelastic parameter. The skin friction [Formula: see text] variation against viscoelastic parameter is noticed with uplifting trend when [Formula: see text] and vice versa, for [Formula: see text] Outcomes for the Nusselt and Sherwood numbers and rate of heat and mass transfer have been obtained and discussed for parametric variations of the buoyancy parameter ξ, magnetic parameter M, temperature ratio parameter, Brownian motion parameter [Formula: see text], thermophoresis parameter [Formula: see text] and 1st order chemical reaction Rc. Also, shows relative growth for the momentum and concentration profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call