Abstract

BackgroundMice lacking MyoD exhibit delayed skeletal muscle regeneration and markedly enhanced numbers of satellite cells. Myoblasts isolated from MyoD-/- myoblasts proliferate more rapidly than wild type myoblasts, display a dramatic delay in differentiation, and continue to incorporate BrdU after serum withdrawal.MethodsPrimary myoblasts isolated from wild type and MyoD-/- mutant mice were examined by microarray analysis and further characterized by cell and molecular experiments in cell culture.ResultsWe found that NF-κB, a key regulator of cell-cycle withdrawal and differentiation, aberrantly maintains nuclear localization and transcriptional activity in MyoD-/- myoblasts. As a result, expression of cyclin D is maintained during serum withdrawal, inhibiting expression of muscle-specific genes and progression through the differentiation program. Sustained nuclear localization of cyclin E, and a concomitant increase in cdk2 activity maintains S-phase entry in MyoD-/- myoblasts even in the absence of mitogens. Importantly, this deficit was rescued by forced expression of IκBαSR, a non-degradable mutant of IκBα, indicating that inhibition of NF-κB is sufficient to induce terminal myogenic differentiation in the absence of MyoD.ConclusionMyoD-induced cytoplasmic relocalization of NF-κB is an essential step in linking cell-cycle withdrawal to the terminal differentiation of skeletal myoblasts. These results provide important insight into the unique functions of MyoD in regulating the switch from progenitor proliferation to terminal differentiation.

Highlights

  • Mice lacking MyoD exhibit delayed skeletal muscle regeneration and markedly enhanced numbers of satellite cells

  • Given that NF-κB is normally relocalized to the cytoplasm during myogenic differentiation, we sought to determine if NF-κB remains in the nucleus during induction of differentiation in myoblasts lacking MyoD

  • (See figure on previous page.) Figure 6 Nuclear localization of NF-κB inhibits terminal differentiation. (A) MyoD-/- myoblasts were infected with empty capsid or virus expressing IκBα-SR

Read more

Summary

Introduction

Mice lacking MyoD exhibit delayed skeletal muscle regeneration and markedly enhanced numbers of satellite cells. Myoblasts isolated from MyoD-/- myoblasts proliferate more rapidly than wild type myoblasts, display a dramatic delay in differentiation, and continue to incorporate BrdU after serum withdrawal. Cell survival and differentiation is regulated by NF-κB, a family of ubiquitously expressed transcription factors comprising RelA/p65, c-Rel, RelB, p50 (processed form of p105), and p52 (processed form of p100) [1]. All family members contain a DNA-binding domain, a proteinprotein dimerization domain, and a nuclear localization sequence (NLS). Sub-cellular localization of NF-κB is regulated by ‘inhibitor of κB’ proteins: IκBα, IκBβ, and IκB [3]. The released NF-κB enters the nucleus, binds DNA, and regulates gene transcription. This process is normally activated by molecules such as cytokines, growth factors, and bacterial products [4]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.