Abstract

Lactobacillus species is one of the most commonly used probiotics with a wide range of health-promoting effects, and beneficial effects of the surface protein of the lactobacillus could potentially be involved in the action of probiotics in the gastrointestinal tract. In this study, the anti-inflammatory effect of LPxTG-motif surface protein (LMP) derived from Limosilactobacillus reuteri SH 23 was assessed using a mouse model of colitis induced by dextran sodium sulfate (DSS). The results showed that LMP has the inhibition properties upon the DSS-induced ulcerative colitis of mice via the MAPK-dependent NF-κB pathway. The inflammatory factors TNF-α and IL-6 were inhibited, and the IL-10 secretion was enhanced in the LMP treated DSS mice model. Furthermore, the diversity of the intestinal microbiota bacteria in this treated group was also influenced, including the increase in the abundance of Lactobacillus and Akkermansia genus in the LMP-treated mice groups, and there is a positive correlation between the IL-10 cytokines with the changes in the intestinal microbiota Lactobacillus and Akkermansia. Therefore, LMP derived from the L. reuteri SH 23 has the potential to alleviate inflammatory diseases through the balance of the intestinal flora with the inhibition of the inflammatory factors in the NF-κB pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.