Abstract

Abstract It is preferable to have small size conformal microstrip patch antenna for body worn applications. Size reduction is generally carried out by using magneto-dielectric material. Nanosized Ni 1− x Zn x Fe 2 O 4 ( x =0.25, 0.50 and 0.75) of crystallite size ~32 nm is synthesized as magnetic filler and dispersed in flexible linear low density polyethylene (LLDPE) matrix. The filler concentrations are varied as 1, 3, 5 and 7 wt% in the composite. The developed composite is tested for suitability to be used as substrate for microstrip antenna by determining its permittivity, permeability and losses in the C-band (4–8 GHz). Other relevant parameters like, tensile strength, water absorbance and decomposition temperature of the composite are also determined. The real part of complex permittivity of the composite varies from 2.23 to 2.38 and complex permeability from 1.25 to 1.46 for different filler concentrations. Verification of the composites as potential substrates for body worn antenna is carried out by fabricating simple rectangular patch antenna at 6 GHz on it using transmission line model. Rectangular patch for x =0.50 for 7 wt% shows S 11 of −30.44 dB and −10 dB bandwidth of 8.30% at 6.02 GHz. Directivity of 10.14 dBi and negligible side lobe level for both E and H plane radiation pattern is observed. A size reduction of 27.09% as compared to patch on LLDPE and tensile strength of 50 MPa is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.