Abstract

Abstract In the present study, Compressive strength, water absorption, electrical resistivity, Rapid Chloride Permeability Test (RCPT) and Ultrasonic Pulse Velocity (UPV) tests of the hardened composites incorporating two supplementary cementitious materials: agricultural waste ash namely as rice husk ash (RHA) and nano-TiO2 (NT) in cement mortars were investigated. The interfacial transition zone (ITZ) and the microstructure were studied by using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) analysis, respectively. Compressive strength results showed a substantial improvement in samples containing NT and also a slight increase in mortar performance was observed by using up to 10 wt% of RHA as a replacement of cement. However, binary mixtures displayed the best results for strength development and durability. It is also seen that a combination of 15% RHA and 5% NT in mortar led to a positive contribution to durability properties. XRD analysis showed that intensity of Alite and Belite phases decreased and new peak of portlandite achieved with the addition of NT. The SEM micrographs illustrated the widespread distribution of mortars containing NT with packed pore structures which resulted in promoting of strength and durability of specimens. Consequently, the combined mixture of RHA and NT has led to the enhancement of strength and durability properties of mortars. In general, it seems that 15% RHA and 5% NT can be considered as a suitable replacement regarding to the economic efficiency and hardened properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.