Abstract

Spinal cord injury (SCI) is a devastating and common neurological disorder which causes local oxidative damage. The study aimed to investigate the underlying role of ANRIL in H2O2-induced cell injury of rat PC-12 cells. Cell injury was evaluated on the basis of cell viability, migration, invasion and apoptosis. The effect of ANRIL on H2O2-induced cell injury was estimated after cell transfection. Then, the interaction between ANRIL and miR-125a was explored by qRT-PCR and estimation of cell injury. Predicted by TargetScan, the possible target gene of miR-125a was verified. After that, the effects of aberrantly expressed target gene on cell viability, migration, invasion and apoptosis as well as phosphorylation of key kinases involved in JAK/STAT and ERK/MAPK pathways were evaluated. Results revealed that H2O2-induced PC-12 cell injury could be aggravated by ANRIL suppression. ANRIL appeared to act as a sponge of miR-125a, and ANRIL suppression promoted H2O2-induced cell injury by up-regulation of miR-125a. MCL-1 was a target of miR-125a, and MCL-1 was negatively correlated with miR-125a. Subsequent experiments showed the effect of MCL-1 silence on H2O2-induced PC-12 cell injury was the same as ANIRL suppression. MCL-1 attenuated H2O2-induced PC-12 cell injury by activating JAK/STAT and ERK/MAPK pathways. These findings suggested that knockdown of ANRIL aggravates H2O2-induced injury in PC-12 cells by targeting miR-125a. This might provide novel insights in the role of ANRIL in pathogenesis of oxidative damage during SCI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.