Abstract

The most important and significant research topic in mechanical and industrial engineering is the fluid flow with heat transport by a stretched surface because of the numerous applications. The impact of heat transport on product quality can be noticed in the field of chemical engineering, polymer processing, glass fiber production, hot rolling, metal extrusion, production of paper, and drawing of plastic films and wires. In light of such foregoing applications, an attempt is made to model the thermal and solutal diffusion phenomena in Oldroyd-B nanofluid flow over a stretching cylinder by using Buongiorno's model and Cattaneo-Cristov theory. To explore the heat flow mechanism in the flow, the effects of heat source/sink with ohmic heating are also considered. Additionally, the influence of chemical reactions is used to investigate the solutal transport process in nanofluid flow. The mathematical formulation section of the manuscript depicts the mathematical modeling of momentum, heat, and mass diffusion equations. The effect of dimensionless physical constraints on the flow, temperature, and concentration distributions of Oldroyd-B nanofluid flow are investigated using the homotopy analysis method (HAM) in Wolfram Mathematica. In the results and discussion section, graphical findings are displayed and physically justified. A section of concluding remarks is added at the end of the text to emphasize the study's major findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.