Abstract

Boron-doped diamond nanocrystals were grown on Si wafers through introduction of the gas mixture of B2O3 dissolved in ethanol and hydrogen by a hot filament chemical vapor deposition (HFCVD) technique. Boron level in diamond films were controlled in the range from 100 to 500 ppm by adjusting the B/C ratios of gas mixtures in order to synthesize and improve the conductivity and quality of HFCVD diamond films with cluster size of nanometer. To investigate the effect of different boron percentage in the chamber on deposited films, Raman spectroscopy, field emission scanning electron microscopy and four point probe techniques were applied to characterize the properties of diamond films. Experimental results indicated that higher boron incorporation in the diamond films introduced bigger crystal clusters, better crystal quality and smaller film resistivity when the level of boron increased from 100 to 300 ppm, while they showed an opposite trend with a further increase of boron level from 300 to 500 ppm. However, in any case the higher boron-doping level led to a decrease of the non-diamond phase in the nanodiamond films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.