Abstract
Abstract The machine learning algorithm is gaining prominence in traffic identification research as it offers a way to overcome the shortcomings of port-based and deep packet inspection, especially for P2P-based Skype. However, recent studies have focused mainly on traffic identification based on a full-packet dataset, which poses great challenges to identifying online network traffic. This study aims to provide a new flow identification algorithm by taking the sampled flow records as the object. The study constructs flow records from a Skype set as the dataset, considers the inherent NETFLOW and extended flow metrics as features, and uses a fast correlation-based filter algorithm to select highly correlated features. The study also proposes a new NFI method that adopts a Bayesian updating mechanism to improve the classifier model. The experimental results show that the proposed scheme can achieve much better identification performance than existing state-of-the-art traffic identification methods, and a typical feature metric is analyzed in the sampling environment. The NFI method improves identification accuracy and reduces false positives and false negatives compared to other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.