Abstract

Polyvinyl alcohol (PVA) sponges are widely used for clinical applications, including ophthalmic surgical treatments, wound healing and tissue engineering. There is, however, a lack of sufficient data on the mechanical properties of PVA sponges. In this study, a biomechanical method is used to characterize the elastic modulus, maximum stress and strain as well as the swelling ratio of a fabricated PVA sponge (P-sponge) and it is compared with two commercially available PVA sponges (CENEFOM and EYETEC). The results indicate that the elastic modulus of the P-sponge is 5.32% and 13.45% lower than that of the CENEFOM and EYETEC sponges, while it bears 4.11% more and 10.37% less stress compared to the CENEFOM and EYETEC sponges, respectively. The P-sponge shows a maximum strain of 32% more than the EYETEC sponge as well as a 26.78% higher swelling ratio, which is a significantly higher absorbency compared to the CENEFOM. It is believed that the results of this study would help for a better understanding of the extension, rupture and swelling mechanism of PVA sponges, which could lead to crucial improvement in the design and application of PVA-based materials in ophthalmic and plastic surgeries as well as wound healing and tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call