Abstract
Reconfigurable intelligent surfaces (RIS) have emerged as a prominent and widely debated solution to enhance the energy efficiency of wireless communications. This article explores the potential of combining RIS with unmanned aerial vehicles (UAVs)-RIS, to provide on-demand deployment services in dynamic environments. However, the energy limitations of battery-powered UAVs can curtail the advantages of UAV-RIS systems. To address this challenge and enhance the durability of UAV-RIS deployments, we introduce an energy harvesting technique for simultaneous wireless information and power transfer (SWIPT) coupled with optimized resource allocation and energy harvesting from incoming radio frequency (RF) signals. In contrast to previous research, our approach involves the division of passive reflected arrays across geometric space, facilitating simultaneous information transfer and energy harvesting. Additionally, we are developing deep Q-network (DQN) and deep deterministic policy gradient (DDPG) techniques to dynamically allocate UAV-RIS resources in both temporal and spatial dimensions. This allocation maximizes the overall harvested energy while upholding communication quality for every user. Our simulation results conclusively demonstrate the substantial superiority of the proposed UAV-RIS SWIPT system over the benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AEUE - International Journal of Electronics and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.