Abstract

Loss of homeostasis triggers the endoplasmic reticulum (ER) stress response and activates the unfolded protein response (UPR) resulting in the induction of the CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP). Glucocorticoids (GCs), via the glucocorticoid receptor (GR), regulate numerous physiological processes in an effort to maintain homeostasis. Previous studies demonstrated that glucocorticoids suppress ER stress by enhancing correct folding of secreted proteins and degradation of misfolded proteins. Here, we describe a novel crosstalk between ER-stress and the glucocorticoid receptor signaling. We showed that treatment of wild type mice with Tunicamycin (inducer of ER-stress) increased GR protein levels in the lungs. Treatment of A549 cells (human lung cancer cells) with ER stress inducers modulated the Dexamethasone-induced subcellular localization of GR and the phosphorylated forms of GR (pGRSer211 and pGRSer203) with concomitant changes in the expression of primary GR-target genes. We demonstrated a significant protein-protein interaction between GR and CHOP, (GR-CHOP heterocomplex formation) under ER stress conditions. The functional consequences of ER stress- GR signaling crosstalk were assessed and demonstrated that long time exposure (24–48 h) of A549 cells to dexamethasone (10−6 M) reversed the Tunicamycin-induced cell death, a phenomenon associated with parallel increases in GR protein content, increases in cell survival parameters and decreases in cell apoptosis-related parameters. Our study provides evidence that there is a cross talk between ER-stress and GR signaling, this being associated with mutual functional antagonism between CHOP and GR-mediated pathways in lung cells with important implications in lung cell function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.