Abstract

We have investigated the potassium-decorated boron nitride nanotubes for hydrogen storage using semi-empirical AM1 method. The ultra narrow (3,3) and (5,0) boron nitride nanotubes of same diameter but of different chirality have been used. Both of them show hydrogen storage greater than 8 % by weight. Density of states have been calculated, and it is found that the presence of alpha density of state of potassium results in smaller energy gap; as a result of which, the conductivity of the potassium-decorated boron nitride nanotubes is enhanced as compared to pristine boron nitride nanotubes. Charge decomposition analysis showed that there is significant transfer of charge from adsorbate potassium to boron nitride nanotubes; the same is also confirmed by Mulliken population analysis. For same diameter, due to different electronic configuration, zigzag tube is found to be slightly more favorable for hydrogen adsorption. The results of the present simulation study suggest that the potassiumdecorated boron nitride nanotubes are good candidate for hydrogen adsorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.