Abstract

Clinical and functional impairment after nonoperative treatment of distal biceps ruptures is not well understood. The goal of this study was to measure patients' perceived disability, kinematic adjustment, and forearm supination power after nonoperative treatment of distal biceps ruptures. Fourteen individuals after nonoperative treatment of distal biceps ruptures were matched to a control group of 18 uninjured volunteers. Both groups prospectively completed the Disabilities of the Arm, Shoulder and Hand (DASH), Single Assessment Numerical Evaluation (SANE), and Biceps Disability Questionnaire. Both performed a new timed isotonic supination test that was designed to simulate activities of daily life. The isotonic torque dynamometer measures the supination arc, center of supination arc, torque, angular velocity, and power. Motion analysis quantifies forearm and shoulder contributions to the arc of supination. The nonoperative treated group's DASH (23.2 ± 10.3) and SANE (59.6 ± 16.2) scores demonstrated a clinical meaningful impairment. The control group showed no significant differences in kinematic values between dominant and nondominant arms (P = .854). The nonoperative biceps ruptured arms, compared with their uninjured arms, changed supination motion by decreasing the supination arc (P ≤ .036), shifting the center of supination arc to a more pronated position (P ≤ .030), and increasing the shoulder contribution to rotation (P ≤ .001); despite this adaptation, their average corrected power of supination decreased by 47% (P = .001). Patients should understand that nonoperative treatment for distal biceps ruptures will result in varying degrees of functional loss as measured by the DASH, SANE, and Biceps Disability Questionnaire, change their supination kinematics during repetitive tasks, and that they will lose 47% of their supination power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call