Abstract

Cerium and nitrogen co-doped anatase TiO(2) nanoparticles were synthesized using a one-step technique via a modified sol-gel process and characterized by XRD, BET, DRS, Raman and XPS. The photocatalytic mechanism of the degradation of methylene blue (MB) under fluorescent light and visible light irradiation was studied. Co-doping cerium and nitrogen in the crystal lattice of TiO(2) narrowed the band gap from 2.40 eV (Ce-doped TiO(2)) to 2.21 eV (Ce/N co-doped TiO(2)). Ce(4+)/Ce(3+) pairs, oxynitride species and Ti-O-N and Ti-O-Ce bonds were determined by XPS. The recombination of photogenerated electron-hole pairs was inhibited due to the synergistic effect of doping with Ce(4+)/Ce(3+) ions and N atoms. The optimal doping ratio was 0.70% Ce and 0.70% N using MB photocatalytic degradation under fluorescent light and visible light irradiation (lambda>420 nm). The enhanced photocatalytic degradation under visible light irradiation was attributed to the increasing number of photogenerated OH radicals. The recombination of photogenerated e(-)-h(+) was attributed to be the key factor for the decrease in the photocatalytic degradation efficiency of MB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.