Abstract

BackgroundGlioblastoma multiforme (GBM) is characterized by lethal aggressiveness and patients with GBM are in urgent need for new therapeutic avenues to improve quality of life. Current studies on tumor invasion focused on roles of cytokines in tumor microenvironment and numerous evidence suggests that TGF-β2 is abundant in glioma microenvironment and vital for glioma invasion. Autopagy is also emerging as a critical factor in aggressive behaviors of cancer cells; however, the relationship between TGF-β2 and autophagy in glioma has been poorly understood.MethodsU251, T98 and U87 GBM cell lines as well as GBM cells from a primary human specimen were used in vitro and in vivo to evaluate the effect of TGF-β2 on autophagy. Western blot, qPCR, immunofluorescence and transmission-electron microscope were used to detect target molecular expression. Lentivirus and siRNA vehicle were introduced to establish cell lines, as well as mitotracker and seahorse experiment to study the metabolic process in glioma. Preclinical therapeutic efficacy was evaluated in orthotopic xenograft mouse models.ResultsHere we demonstrated that TGF-β2 activated autophagy in human glioma cell lines and knockdown of Smad2 or inhibition of c-Jun NH2-terminal kinase, attenuated TGF-β2-induced autophagy. TGF-β2-induced autophagy is important for glioma invasion due to the alteration of epithelial-mesenchymal transition and metabolism conversion, particularly influencing mitochondria trafficking and membrane potential (△Ψm). Autopaghy also initiated a feedback on TGF-β2 in glioma by keeping its autocrine loop and affecting Smad2/3/7 expression. A xenograft model provided additional confirmation on combination of TGF-β inhibitor (Galunisertib) and autophagy inhibitor (CQ) to better “turn off” tumor growth.ConclusionOur findings elucidated a potential mechanism of autophagy-associated glioma invasion that TGF-β2 could initiate autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion.

Highlights

  • Glioblastoma multiforme (GBM) is characterized by lethal aggressiveness and patients with GBM are in urgent need for new therapeutic avenues to improve quality of life

  • TGF-β2 and LC3B are highly expressed in glioma and correlated with each other indicating poor prognosis in glioma patients large studies has been conducted [27, 28], the role of autophagy’s markers Light Chain 3B (LC3B), ATG5 and ATG7 in glioma prognosis was still controversial

  • By applying immunochemistry on samples with different pathologic grades obtained from patients in Qilu Hospital, China from 2012 to 2015, we found that the percentage of LC3B, ATG5, ATG7 positive cells was associated with the pathologic grade (Fig. 1a)

Read more

Summary

Introduction

Glioblastoma multiforme (GBM) is characterized by lethal aggressiveness and patients with GBM are in urgent need for new therapeutic avenues to improve quality of life. Current studies on tumor invasion focused on roles of cytokines in tumor microenvironment and numerous evidence suggests that TGF-β2 is abundant in glioma microenvironment and vital for glioma invasion. Autopagy is emerging as a critical factor in aggressive behaviors of cancer cells; the relationship between TGF-β2 and autophagy in glioma has been poorly understood. Despite enormous efforts to target various pathways by suppressing oncogenes or angiogenesis, no improvement in survival has occurred, necessitating further study of the mechanisms of glioma oncogenesis [2]. Zhang et al Journal of Experimental & Clinical Cancer Research (2017) 36:162 much research has focused on the effect of cytokines on glioma invasion [7, 8]. TGF-β (transforming growth factor-β) is reported to be associated with essential molecules in glioma invasion [9,10,11]. TGF-β could be divided into three isoforms in mammals: TGF-β1, TGF-β2, TGF-β3 and shared approximately 80% amino acid sequence identity and are distributed in different tissues [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call