Abstract
In recent years, the analysis of natural image has made great progress while the image of the intrinsic component analysis can solve many computer vision problems, such as the image shadow detection and removal. This paper presents the novel model, which integrates the feature fusion and the multiple dictionary learning. Traditional model can hardly handle the challenge of reserving the removal accuracy while keeping the low time consuming. Inspire by the compressive sensing theory, traditional single dictionary scenario is extended to the multiple condition. The human visual system is more sensitive to the high frequency part of the image, and the high frequency part expresses most of the semantic information of the image. At the same time, the high frequency characteristic of the high and low resolution image is adopted in the dictionary training, which can effectively recover the loss in the high resolution image with high frequency information. This paper presents the integration of compressive sensing model with feature extraction to construct the two-stage methodology. Therefore, the feature fusion algorithm is applied to the dictionary training procedure to finalize the robust model. Simulation results proves the effectiveness of the model, which outperforms compared with the other state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.