Abstract

High-temperature superconducting wires have many large-scale, niche applications such as commercial nuclear fusion as well as numerous other large-scale applications in the electric power industry and in the defense, medical and transportation industries. However, the price/performance metric of these coated conductor wires is not yet favorable to enable and realize most large-scale applications. Here we report on probing the limits of Jc (H, T) possible via defect engineering in heteroepitaxially deposited high-temperature superconducting thin-films on coated conductor substrates used for long-length wire fabrication. We report record values of Jc (H, T) and pinning force, Fp (H, T) in (RE)BCO films with self-assembled BaZrO3 nanocolumns deposited on a coated conductor substrate. A Jc of ~190 MA/cm2 at 4.2 K, self-field and ~90 MA/cm2, at 4.2 K, 7 T was measured. At 20 K, Jc of over 150 MA/cm2 at self-field and over 60 MA/cm2 at 7 T was observed. A very high pinning force, Fp, of ~6.4 TN/m3 and ~4.2 TN/m3 were observed at 7 T, 4.2 K and 7 T, 20 K respectively. We report on the highest values of Jc and Fp obtained to date for all fields and operating temperatures from 4.2 K to 77 K. These results demonstrate that significant performance enhancements and hence far more favorable price/performance metrics are possible in commercial high-temperature superconducting wires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.