Abstract
Latent fingerprint identification is such a difficult task to law enforcement agencies and border security in identifying suspects. It is a too complicate due to poor quality images with non-linear distortion and complex background noise. Hence, the image quality is required for matching those latent fingerprints. The current researchers have been working based on minutiae points for fingerprint matching because of their accuracy are acceptable. In an effort to extend technology for fingerprint matching, our model is to propose the enhancementand matching for latent fingerprints using Scale Invariant Feature Transformation (SIFT). It has involved in two phases (i) Latent fingerprint contrast enhancement using intuitionistic type-2 fuzzy set (ii) Extract the SIFTfeature points from the latent fingerprints. Then thematching algorithm is performedwith n- number of images and scoresare calculated by Euclidean distance. We tested our algorithm for matching, usinga public domain fingerprint database such as FVC-2004 and IIIT-latent fingerprint. The experimental consequences indicatethe matching result is obtained satisfactory compare than minutiae points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.