Abstract

BackgroundSynaptic failure is one of the principal events associated with cognitive dysfunction in Alzheimer’s disease (AD). Preservation of existing synapses and prevention of synaptic loss are promising strategies to preserve cognitive function in AD patients. As a potent natural anti-oxidant, anti-amyloid, and anti-inflammatory polyphenol, curcumin (Cur) shows great promise as a therapy for AD. However, hydrophobicity of natural Cur limits its solubility, stability, bioavailability, and clinical utility for AD therapy. We have demonstrated that solid lipid curcumin particles (SLCP) have greater therapeutic potential than natural Cur in vitro and in vivo models of AD. In the present study, we have investigated whether SLCP has any preservative role on affected dendritic spines and synaptic markers in 5xFAD mice.MethodsSix- and 12-month-old 5xFAD and age-matched wild-type mice received oral administration of SLCP (100 mg/kg body weight) or equivalent amounts of vehicle for 2 months. Neuronal morphology, neurodegeneration, and amyloid plaque load were investigated from prefrontal cortex (PFC), entorhinal cortex (EC), CA1, CA3, and the subicular complex (SC). In addition, the dendritic spine density from apical and basal branches was studied by Golgi-Cox stain. Further, synaptic markers, such as synaptophysin, PSD95, Shank, Homer, Drebrin, Kalirin-7, CREB, and phosphorylated CREB (pCREB) were studied using Western blots. Finally, cognitive and motor functions were assessed using open-field, novel object recognition (NOR) and Morris water maze (MWM) tasks after treatment with SLCP.ResultsWe observed an increased number of pyknotic and degenerated cells in all these brain areas in 5xFAD mice and SLCP treatment partially protected against those losses. Decrease in dendritic arborization and dendritic spine density from primary, secondary, and tertiary apical and basal branches were observed in PFC, EC, CA1, and CA3 in both 6- and 12-month-old 5xFAD mice, and SLCP treatments partially preserved the normal morphology of these dendritic spines. In addition, pre- and postsynaptic protein markers were also restored by SLCP treatment. Furthermore, SLCP treatment improved NOR and cognitive function in 5xFAD mice.ConclusionsOverall, these findings indicate that use of SLCP exerts neuroprotective properties by decreasing amyloid plaque burden, preventing neuronal death, and preserving dendritic spine density and synaptic markers in the 5xFAD mice.

Highlights

  • Synaptic failure is one of the principal events associated with cognitive dysfunction in Alzheimer’s disease (AD)

  • Maiti et al Alzheimer's Research & Therapy (2021) 13:37 (Continued from previous page). Overall, these findings indicate that use of solid lipid curcumin particles (SLCP) exerts neuroprotective properties by decreasing amyloid plaque burden, preventing neuronal death, and preserving dendritic spine density and synaptic markers in the 5xFAD mice

  • In the case of prefrontal cortex (PFC) and entorhinal cortex (EC), we observed a significant increase in the percentage of pyknotic cells in 5xFAD mice, whereas treatment with SLCP significantly mitigated the percentage of pyknotic cells in 5xFAD mice when compared to 5xFAD + vehicle-treated mice (Fig. 2a–c)

Read more

Summary

Introduction

Synaptic failure is one of the principal events associated with cognitive dysfunction in Alzheimer’s disease (AD). Biochemical, and experimental evidence suggests that accumulation of misfolded amyloid beta protein (Aβ) and neurofibrillary tangles from hyperphosphorylated tau are strongly associated with neurodegeneration in Alzheimer’s disease (AD) [1, 2]. Aggregation of these misfolded proteins in intra- and extracellular spaces increases neuroinflammation, oxidative stress [3, 4], and neuronal death. Several different mechanisms have been proposed, including intracellular and extracellular deposition of diffusible or soluble Aβ oligomers, tau hyperphosphorylation, and microglial activation [11] Preventive interventions, such as decreasing neuroinflammation or disaggregating misfolded Aβ and tau tangles are some of the proposed options to prevent neurodegeneration.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call