Abstract
BackgroundCancer cell viability is strongly modulated by the Hippo pathway, which includes mammalian STE20-like protein kinase 1 (Mst1) and yes-associated protein (Yap). Although the roles of Mst1 and Yap in thyroid carcinoma cell death have been fully addressed, no study has determined whether differential modification of Mst1 and Yap could further suppress thyroid carcinoma progression. The aim of our study was to explore the antiapoptotic effects exerted by combined Mst1 overexpression and Yap knockdown in thyroid carcinoma MDA-T32 cells in vitro.MethodsMst1 adenovirus and Yap shRNA were transfected into MDA-T32 cells to overexpress Mst1 and inhibit Yap, respectively. Cell viability and death were determined via an MTT assay, a TUNEL assay and western blotting. Mitochondrial function, mitochondrial fission and pathway studies were performed via western blotting and immunofluorescence.ResultsThe results of our study showed that combined Mst1 overexpression and Yap knockdown further augmented MDA-T32 cell death by mediating mitochondrial damage. In addition, cancer cell migration and proliferation were suppressed by combined Mst1 overexpression and Yap knockdown. At the molecular level, mitochondrial membrane potential, ATP production, respiratory function, and caspase-9-related apoptosis were activated by combined Mst1 overexpression and Yap knockdown. Further, we found that fatal mitochondrial fission was augmented by combined Mst1 overexpression and Yap knockdown in a manner dependent on the JNK-MIEF1 pathway. Inhibition of JNK-MIEF1 pathway activity abolished the proapoptotic effects exerted by Mst1/Yap on MDA-T32 cells.ConclusionsTaken together, our data suggest that Mst1 activation and Yap inhibition coordinate to augment thyroid cancer cell death by controlling the JNK-MIEF1-mitochondria pathway, suggesting that differential regulation of the core Hippo pathway components is potentially a novel therapeutic tool for the treatment of thyroid cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.