Abstract

Silk fibroin extracted from the gland of Bombyx mori silkworm is employed as an ideal system to investigate its conformation transition in methanol/D2O solution. The transition process was monitored by Fourier transform infrared (FTIR) spectroscopy coupled with terahertz time domain spectroscopy (THz-TDS). Analysis of FTIR spectra suggests that, with increasing time of treatment, an increasing band at 1634 cm(-1) is observed indicating the formation of β-pleated sheets coincident with the loss of intensity of a band at 1673 cm(-1) indicating decrease of the random coil structure. In addition, there is a burst phase of 33% occurring during the first 2 minutes when the gland fibroin membranes are immersed into methanol/D2O solution. THz spectra present distinct features for conformations of silk fibroin, in combination with the results obtained from FTIR; the peaks observed at 1.54 THz (51 cm(-1)), 1.67 THz (55 cm(-1)), and 1.84 THz (61 cm(-1)) can be attributed to a β-pleated sheet, α-helix, and random coil, respectively. Intensity change of bands centered at 1.54 THz and 1.84 THz confirms the formation of the β-pleated sheet and the disappearance of the random coil. Kinetic curves obtained from THz spectra indicate that the methanol-induced conformation transition from the random coil to the β-pleated sheet is fitted with an exponential function. The results suggest that THz-TDS presents great potential as a complementary approach in studying the secondary structure of a protein, providing significant insight into the silk-spinning process in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.