Abstract

A new method is provided for preparing self-supporting flexible lithium-ion battery electrodes of a textile structure by using extrusion 3D printing technology, using a high concentration of polyvinylidene fluoride as a viscosity modifier, carbon nanotube as a conductive agent, lithium iron phosphate or lithium titanate as an electrode active material. A printable ink prepared in the paper, with an apparent viscosity of approximately 105 Pa s, exhibits significant shear thinning behavior, and the storage modulus platform value reaches a high value of 105 Pa; its excellent rheological properties are beneficial for the printing and solidification process. Electrochemical test results show that the two printing electrodes have a stable and well-matched charge–discharge specific capacity, so the assembled soft-packed lithium-ion battery displays a discharge specific capacity of up to 108 mAh·g−1, and after bending the battery, the discharge specific capacity under the same current density (50 mA·g−1) is about 111 mAh·g−1. The outstanding electrochemical properties open up possibilities for flexible and wearable electronics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.