Abstract

While inhalation anesthetics are indispensable, and generally considered safe and effective, there is growing concern about the selective neurotoxicity of these agents, especially sevoflurane. Erythropoetin (EPO)-induced protection against sevoflurane-induced neuronal death is an effective intervention, but the underlying mechanism is poorly understood. Extracellular signal-related kinases (Erk) 1/2 plays a pivotal role in cell growth and proliferation. Alteration of the nuclear factor erythroid 2-related factor (Nrf2)/BTB-to-CNC homology 1 (Bach1) ratio by Erk1/2 ameliorates the oxidative stress which occurs in human macrophages. Primary cortical neuron cultures exposed to sevoflurane were assessed for Nrf2, Bach1, total Erk1/2, and phosphorylated Erk1/2 with the following: 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide; propidium iodide uptake; lactate dehydrogenase; malondialdehyde (MDA); superoxide dismutase (SOD); and Western blot. Sevoflurane exposure increased cell death, injury, and MDA (n = 9, P < 0.05), but decreased cell viability and the Nrf2:Bach1 ratio (n = 9, P < 0.05) and down-regulated SOD (n = 9, P < 0.05), while EPO partially rescued the neurotoxicity induced by sevoflurane (n = 9, P < 0.05). Inhibition of Erk1/2 phosphorylation via PD98059 reversed the protective effect of EPO (n = 9, P < 0.05). Thus, protection of EPO markedly attenuated death of neurons exposed to sevoflurane by altering the Nrf2:Bach1 ratio mediated by phosphorylation and activation of Erk1/2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call