Abstract

BackgroundThe purpose of the study. Along with research on development of more efficient gene delivery systems, it is necessary to search on stabilization processes to extend their active life span. Chitosan is a nontoxic, biocompatible and available gene delivery carrier. The aim of this study was to assess the ability of this polymer to preserve transfection efficiency during spray-drying and a modified freeze-drying process in the presence of commonly used excipients.MethodMolecular weight of chitosan was reduced by a chemical reaction and achieved low molecular weight chitosan (LMWC) was complexed with pDNA. Obtained nanocomplex suspensions were diluted by solutions of lactose and leucine, and these formulations were spray dried or freeze dried using a modified technique. Size, polydispersity index, zeta potential, intensity of supercoiled DNA band on gel electrophoresis, and transfection efficiency of reconstituted nanocomplexes were compared with freshly prepared ones.Results and major conclusionSize distribution profiles of both freeze dried, and 13 out of 16 spray-dried nanocomplexes remained identical to freshly prepared ones. LMWC protected up to 100% of supercoiled structure of pDNA in both processes, although DNA degradation was higher in spray-drying of the nanocomplexes prepared with low N/P ratios. Both techniques preserved transfection efficiency similarly even in lower N/P ratios, where supercoiled DNA content of spray dried formulations was lower than freeze-dried ones. Leucine did not show a significant effect on properties of the processed nanocomplexes. It can be concluded that LMWC can protect DNA structure and transfection efficiency in both processes even in the presence of leucine.

Highlights

  • Obesity has reached epidemic proportions and is still escalating at an alarming rate worldwide

  • Obesity is associated with chronic activation of low-grade inflammation [3], which is implicated in the pathogenesis of obesity-associated diseases including insulin resistance, type-2 diabetes (T2D) [4, 5] and cardiovascular disease [6, 7]

  • A numerous of studies has been shown that shortchain fatty acids (SCFAs) inhibit inflammation with focus on butyrate and to a lesser extent on acetate and Propionic Acid (PA), [16]

Read more

Summary

Introduction

Obesity has reached epidemic proportions and is still escalating at an alarming rate worldwide. In Palestine the prevalence of obesity has been shown to be approximately 4. The etiology of obesity and low-grade inflammation is complex and involves intrinsic and extrinsic factors. The colonization of germ-free mice with microbiota derived from obese mice results in significantly greater adiposity than colonization with microbiota from lean mice [12]. Prebiotic diets such as fructans [13] are associated with general better health, including the decrease in body weight, fat mass and the severity of T2D [14,15,16]. The factors that influence the composition and metabolism of intestinal

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call