Abstract

Multidrug resistance is a major barrier in the battle against tuberculosis and still a leading cause of death worldwide. In order to fight this pathogen, two routes are practicable: vaccination or drug treatment. Vaccination against Mycobacterium tuberculosis with the current vaccine Mycobacterium bovis Bacillus Calmette-Guerin is partially successful, being its efficacy variable. A few new tuberculosis vaccines are now in various phases of clinical trials. The emergence of multidrug-resistant strains of M. tuberculosis gave the impulse to discover new effective antitubercular drugs, a few of which are in clinical development. Here we focus on three different classes of very promising antitubercular drugs recently discovered (benzothiazinones, dinitrobenzamides, and benzoquinoxalines) that share the same cellular target: a subunit of the heteromeric decaprenylphosphoryl-β-D: -ribose 2'-epimerase, encoded by the dprE1 (or Rv3790) gene. This enzyme is involved in the biosynthesis of D: -arabinose which is crucial for the synthesis of the mycobacterial cell wall and essential for the pathogen's survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.