Abstract
Most research on anomaly detection has focused on event that is different from its spatial–temporal neighboring events. However, it is still a significant challenge to detect anomalies that involve multiple normal events interacting in an unusual pattern. To address this problem, a novel semi-supervised method based on sparse topic model is proposed to detect anomalies in video surveillance. Short local trajectory method is used to extract motion information in order to improve the robustness of trajectories. For the purpose of strengthening the relationship of interest points on the same trajectory, the Fisher kernel method is applied to obtain the representation of trajectory which is quantized into visual word. Then, the sparse topic model is proposed to explore the latent motion patterns and achieve a sparse representation for the video scene. Finally, a semi-supervised learning method is applied to enhance the discrimination of model and improve the performance of anomaly detection. Experiments are conducted on QMUL dataset and AVSS dataset. The results demonstrated the superior efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.