Abstract

Dockless bike-sharing is becoming popular all over the world, and short-term spatiotemporal distribution forecasting on system state has been further enlarged due to its dynamic spatiotemporal characteristics. We employ a deep learning approach, named the convolutional long short-term memory network (conv-LSTM), to address the spatial dependences and temporal dependences. The spatiotemporal variables including number of bicycles in area, distribution uniformity, usage distribution, and time of day as a spatiotemporal sequence in which both the input and the prediction target are spatiotemporal 3D tensors within one end-to-end learning architecture. Experiments show that conv-LSTM outperforms LSTM on capturing spatiotemporal correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.