Abstract
A switched reluctance motor (SRM) drive system has highly nonlinear uncertainties owing to a convex construction. It is hard for the linear control methods to achieve good performance for the SRM drive system. An adaptive nonlinear backstepping control system using the mended recurrent Romanovski polynomials neural network and mended PSO with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SRM drive system. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the mended recurrent Romanovski polynomials neural network and the error estimated law are established. Furthermore, to help improve convergence and to obtain better learning performance, the mended particle swarm optimization (PSO) algorithm is utilized for adjusting the two varied learning rates of the two parameters in the mended recurrent Romanovski polynomials neural network. Finally, some experimental results and a comparative analysis are verified that the proposed control scheme has better control performances for controlling the SRM drive system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.