Abstract

H2A.Z is an evolutionarily highly conserved non-allelic variant of histone H2A. H2A.Z and its homologues have been shown to involve in both chromatin silencing and activation. Although much of our knowledge of H2A.Z biological activity has come from studies on its yeast homologue Htz1, H2A.Z appears to have more complex and diverse functions in higher eukaryotes. To investigate the involvement of H2AvD, a Drosophila homologue of mammalian H2A.Z, in mechanisms of conditional activation of facultatively silenced genes, we generated transgenic Drosophila lines expressing H2AvD fused at the C- or N-terminus with the green fluorescent protein (GFP). Using heat shock-induced gene activation and polytene chromosome puff formation as an in vivo model system, we analyzed effects of H2AvD termini modifications on transcription. We found that N-terminally fused GFP inhibited H2AvD acetylation and impaired heat shock-induced puff formation and hsp70 gene activation. Our data suggest that the N-terminal region of H2AvD plays a pivotal role in transcriptional activation and that induction of transiently silenced Drosophila loci associates with increased acetylation of H2AvD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.