Abstract

In situ imaging of mRNA in living cells can help to monitor the real time mRNA expression and also useful for diagnosis and prognosis of the diseases. In this study, a new strategy was designed for simple, sensitive, and selective platform to detect the mRNA levels by combining a hairpin probe-graphene oxide (HP1/GO) and duplex-specific nuclease signal amplification (DSNSA). Initially, the DNA probe was adsorbed on the surface of GO to protect it from enzymatic digestion. Then, the target mRNA (T1) was hybridized with a partial hairpin probe which formed a duplex. Finally, under the action of DSN nuclease, the ssDNA in the DNA/RNA hybrid was selectively cleaved and produced small fragments. Then, T1 triggered the next reaction cycle, constituting a new circular exponential amplification. Here, we conclude that this assay is highly sensitive for the detection of target mRNA with the lower detection limit of 1 fM under optimal conditions. Furthermore, this strategy was successfully used for imaging of mRNA in living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call