Abstract

Abstract Introduction Primary brain tumours originate from cells within the brain. The commonest malignant types are gliomas which are graded from I-IV. Emerging evidence has elucidated the function of the mitochondrially localised B-cell lymphoma-extra-large (Bcl-xL) protein, and its promotion of tumour progression-associated properties. Our lab has previously established that Bcl-xL-overexpressing neurons increase metabolic efficiency by producing more adenosine triphosphate and consuming less oxygen, which we assumed, fuels cancer cells to proliferate. Method We quantified the subcellular expression patterns of Bcl-xL in primary brain tumour samples through immunohistochemistry on a brain tissue microarray containing 16 glioma cases from Grades II-IV. We used antibodies against Bcl-xL, heat shock protein 60 for mitochondrial detection and proliferating cell nuclear antigen for cancerous cell detection. Results Bcl-xL is overexpressed in cancerous cells of Grade IV gliomas and is significantly greater than cancerous cells of Grade III and Grade II gliomas. Cancerous cells express higher levels of Bcl-xL than non-cancerous cells in all grades of glioma. Conclusions Bcl-xL-overexpressing neurons exhibit enhanced metabolic efficiency, contributing to increased proliferation rates. Future research should focus on the characterisation of ATP levels and oxygen consumption in glioma cells. Conclusively, pharmacological inhibition of Bcl-xL will suppress the proliferation rate in gliomas and cease cancer cell growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call