Abstract

Functional magnetic resonance imaging (fMRI) has provided intriguing insights into the topography and functional organization of visual cortical areas in the human brain. However, little is known about the functional anatomy of subcortical nuclei. Here, we used high-resolution fMRI (1.5 x 1.5 x 2 mm3) at 3 tesla to investigate the retinotopic organization of the human lateral geniculate nucleus (LGN). The central 15 degrees of the visual field were mapped using periodic flickering checkerboard stimuli that evoked a traveling wave of activity. The contralateral visual hemifield was represented with the lower field in the medial-superior portion and the upper field in the lateral-inferior portion of each LGN. The horizontal meridian was significantly overrepresented relative to the vertical meridian. The fovea was represented in posterior and superior portions, with increasing eccentricities represented more anteriorly. The magnification of the fovea relative to the periphery was similar to that described for human primary visual cortex. The magnocellular regions of the LGN were distinguished based on their sensitivity to low stimulus contrast and tended to be located in its inferior and medial portions. Our results demonstrate striking similarities in the topographic organization of the macaque and human LGN and support accounts of a constant magnification from the retina through the cortex in both species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.