Abstract

During smooth pursuit, the image of the target is stabilized on the fovea, implying that speed judgments made during pursuit must rely on an extraretinal signal providing precise eye speed information. To characterize the introduction of such extraretinal signal into the human visual system, we performed a factorial, functional magnetic resonance imaging experiment, in which we manipulated the factor eye movement, with "fixation" and "pursuit" as levels, and the factor task, with "speed" and "form" judgments as levels. We hypothesized that the extraretinal speed signal is reflected as an interaction between speed judgments and pursuit. Random effects analysis yielded an interaction only in dorsal early visual cortex. Retinotopic mapping localized this interaction on the horizontal meridian (HM) between dorsal areas visual 2 and 3 (V2/V3) at 1-2 degrees azimuth. This corresponded to the position the pursuit target would have reached, if moving retinotopically, at the time of the subject's speed judgment. Because the 2 V2/V3 HMs are redundant, both may be involved in speed judgments, the ventral one involving judgments based on retinal motion and the dorsal one judgments requiring an internal signal. These results indicate that an extraretinal speed signal is injected into early visual cortex during pursuit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.