Abstract

Two types of field potentials were identified in cat visual cortex using contrast reversal of oriented bar gratings: a short-latency fast-local component with a retinotopic organization similar to that seen with single-unit discharges at the same cortical site, and a slow, nonretinotopic component with a longer peak latency. The slow-distributed component had an extensive receptive field mapped by measuring the amplitude of binary kernels and showed strong inhibitory interactions within the receptive field. The peak latency of the slow-local component increased with distance from the retinotopic center, suggesting a possible conduction delay. Both components showed some orientation bias depending on the laminar location, but the bias could be independent of the orientation preferred by single units in the immediate vicinity. The present findings indicate that locally generated field potentials reflect cortical mechanisms for nonlinear integration over wide areas of the visual field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call