Abstract

Whether vitamin A promotes skeletal fragility, has no effect on fracture rate, or protects against bone loss is unclear. In the present study, effects of retinoids on osteoclast differentiation in cultured mouse bone marrow cells (BMCs), bone marrow macrophages (BMMs), spleen cells, and RAW264.7 cells were evaluated by analyzing osteoclast formation and expression of genes important in signal transduction and osteoclast function. All-trans-retinoic acid (ATRA) did not stimulate osteoclastogenesis in BMCs, but inhibited hormone and RANKL-induced gene expression and formation of osteoclasts. In BMMs, spleen cells, and RAW264.7 cells, osteoclast differentiation and formation stimulated by M-CSF/RANKL were inhibited (IC(50) = 0.3 nM) by ATRA. The effect was exerted at an early step of RANKL-induced differentiation. ATRA also abolished increases of the transcription factors c-Fos and NFAT2 stimulated by RANKL and suppressed down-regulation of the antiosteoclastogenic transcription factor MafB. By comparing effects of several compounds structurally related to ATRA, as well as by using receptor antagonists, evaluation pointed to inhibition being mediated by RARalpha, with no involvement of PPARbeta/delta. The results suggest that activation of RARalpha by retinoids in myeloid hematopoietic precursor cells decreases osteoclast formation by altering expression of the transcription factors c-Fos, NFAT2, and MafB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.