Abstract

Insulin regulates the expression of genes involved in hepatic glucose and lipid metabolism, such as the cytosolic form of phosphoenolpyruvate carboxykinase gene (Pck1). We have reported that lipophilic molecules from rat livers induced Pck1 transcription and attenuated insulin-mediated suppression of its expression in primary rat hepatocytes. After identification of retinol and retinal as the active molecules, the present study was aimed to determine the effects of retinoids on insulin-mediated suppression of Pck1 expression in primary rat hepatocytes. Real-time PCR and reporter gene assays were designed to determine retinoid effects in the absence or presence of insulin on the expression levels of Pck1 mRNA and activation of its promoter constructs, respectively. The lipophilic extract from rat livers specifically induced the expression of Pck1, but not that of two other insulin-suppressed genes, glucose 6-phosphatase catalytic subunit and insulin-like growth factor-binding protein 1. Retinol, retinal, and retinoic acid (RA) induced Pck1 expression dose-dependently in primary hepatocytes. Specific activation of retinoic acid receptor (RAR), but not retinoid X receptor, attenuated insulin-mediated suppression of Pck1 expression. RARα antagonist (Ro41-5253) abolished the retinal-mediated induction of Pck1 expression and attenuation of insulin-mediated suppression of its expression. Disruption of the proximal, but not the distal, RA responsive element in the Pck1 promoter eliminated the RA response of Pck1 promoter reporter constructs in primary hepatocytes. The results of this study demonstrated for the first time that retinoid treatment attenuated insulin-mediated suppression of Pck1 expression in primary rat hepatocytes. It suggests that retinoid metabolism in hepatocytes may modulate hepatic insulin action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.