Abstract

Retinoid X receptor (RXR), particularly RXRα, has been implicated in cardiovascular diseases. However, the functional role of RXR activation in myocardial infarction (MI) remains unclear. This study aimed to determine the effects of RXR agonists on MI and to dissect the underlying mechanisms. Sprague-Dawley (SD) rats were subjected to MI and then treated (once daily for 4 weeks) with either RXR agonist bexarotene (10 or 30 mg/kg body weight) or vehicle. Heart function was determined using echocardiography and cardiac hemodynamic measurements. Four weeks post MI, myocardial tissues were collected to evaluate cardiac remodeling. Primary cardiac fibroblasts (CFs) were treated with or without RXR ligand 9-cis-RA followed by stimulation with TGF-β1. Immunoblot, immunofluorescence, and co-immunoprecipitation were performed to elucidate the regulatory role of RXR agonists in TGF-β1/Smad signaling. In vivo treatment with Bexarotene moderately affects systemic inflammation and apoptosis and ameliorated left ventricular dysfunction after MI in rat model. In contrast, bexarotene significantly inhibited post-MI myocardial fibrosis. Immunoblot analysis of heart tissue homogenates from MI rats revealed that bexarotene regulated the activation of the TGF-β1/Smad signaling pathway. In vitro, 9-cis-RA inhibited the TGF-β1-induced proliferation and collagen production of CFs. Importantly, upon activation by 9-cis-RA, RXRα interacted with p-Smad2 in cytoplasm, inhibiting the TGF-β1-induced nuclear translocation of p-Smad2, thereby negatively regulating TGF-β1/Smad signaling and attenuating the fibrotic response of CFs. These findings suggest that RXR agonists ameliorate post-infarction myocardial fibrosis, maladaptive remodeling, and heart dysfunction via attenuation of fibrotic response in CFs through inhibition of the TGF-β1/Smad pathway activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.